• Open Access

Three-dimensional harmonic oscillator as a quantum Otto engine

A. Rodin
Phys. Rev. Research 6, 013180 – Published 20 February 2024

Abstract

A quantum Otto engine based on a three-dimensional harmonic oscillator is proposed. One of the modes of this oscillator functions as the working fluid, while the other two play the role of baths. The coupling between the working fluid and the baths is controlled using an external central potential. All four strokes of the engine are simulated numerically, exploring the nonadiabatic effects in the compression and expansion phases, as well as the energy transfer during the working fluid's contact with the baths. The efficiency and power of several realizations of the proposed engine are also computed with the former agreeing well with the theoretical predictions for the quantum Otto cycle.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 7 December 2023
  • Accepted 31 January 2024

DOI:https://doi.org/10.1103/PhysRevResearch.6.013180

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

A. Rodin

  • Yale-NUS College, 16 College Avenue West, 138527, Singapore; Centre for Advanced 2D Materials, National University of Singapore, 117546, Singapore; and Department of Materials Science and Engineering, National University of Singapore, 117575, Singapore

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 1 — February - April 2024

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×