• Open Access

Multipurpose platform for analog quantum simulation

Shuwei Jin, Kunlun Dai, Joris Verstraten, Maxime Dixmerias, Ragheed Alhyder, Christophe Salomon, Bruno Peaudecerf, Tim de Jongh, and Tarik Yefsah
Phys. Rev. Research 6, 013158 – Published 13 February 2024

Abstract

Atom-based quantum simulators have had many successes in tackling challenging quantum many-body problems, owing to the precise and dynamical control that they provide over the systems' parameters. They are, however, often optimized to address a specific type of problem. Here, we present the design and implementation of a Li6-based quantum gas platform that provides wide-ranging capabilities and is able to address a variety of quantum many-body problems. Our two-chamber architecture relies on a robust combination of gray molasses and optical transport from a laser-cooling chamber to a glass cell with excellent optical access. There, we first create unitary Fermi superfluids in a three-dimensional axially symmetric harmonic trap and characterize them using in situ thermometry, reaching temperatures below 20 nK. This allows us to enter the deep superfluid regime with samples of extreme diluteness, where the interparticle spacing is sufficiently large for direct single-atom imaging. Second, we generate optical lattice potentials with triangular and honeycomb geometry in which we study diffraction of molecular Bose-Einstein condensates, and show how going beyond the Kapitza-Dirac regime allows us to unambiguously distinguish between the two geometries. With the ability to probe quantum many-body physics in both discrete and continuous space, and its suitability for bulk and single-atom imaging, our setup represents an important step towards achieving a wide-scope quantum simulator.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
5 More
  • Received 20 April 2023
  • Revised 5 June 2023
  • Accepted 3 January 2024

DOI:https://doi.org/10.1103/PhysRevResearch.6.013158

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalQuantum Information, Science & Technology

Authors & Affiliations

Shuwei Jin1,*,†, Kunlun Dai1,*, Joris Verstraten1,*, Maxime Dixmerias1, Ragheed Alhyder1,‡, Christophe Salomon1, Bruno Peaudecerf1,2, Tim de Jongh1, and Tarik Yefsah1

  • 1Laboratoire Kastler Brossel, ENS-Université PSL, CNRS, Sorbonne Université, Collège de France, 24 rue Lhomond, 75005 Paris, France
  • 2Laboratoire Collisions Agrégats Réactivité, UMR 5589, FERMI, UT3, Université de Toulouse, CNRS, 118 Route de Narbonne, 31062, Toulouse CEDEX 09, France

  • *These authors contributed equally to this work.
  • Present address: Physikalisches Institut, Universität Heidelberg, Im Neuenheimer Feld 226, 69120, Heidelberg, Germany.
  • Present address: Institute of Science and Technology Austria (ISTA), Am Campus 1, 3400 Klosterneuburg, Austria.

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 1 — February - April 2024

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×