• Open Access

Emergence of directed motion in a crowded suspension of overdamped particles with different effective temperatures

Deborah Schwarcz and Stanislav Burov
Phys. Rev. Research 6, 013156 – Published 12 February 2024

Abstract

In this work, we focus on the behavior of a single passive Brownian particle in a suspension of passive particles with short-range repulsive interactions and higher effective temperature. While the forces affecting the single particle are thermal-like fluctuations and repulsion, due to other particles in the suspension, our numerical simulations show that on intermediate timescales directed motion on a single-particle level emerges. This emergent directional motion leads to a breakdown of the Einstein relation and nonmonotonic augmentation of the measured diffusion coefficient. Directional tendency increases with the density of the suspension and leads to growth of the diffusivity with the density of the suspension, a phenomenon recently observed for a system of hard spheres by Ilker, Castellana, and Joanny. Counterintuitively, the directional flow originates from the tendency of different particles to push each other out of their way. Due to such strictly repulsive interactions, nearby particles form into temporally correlated pairs and move cooperatively, thus creating a preferred direction of motion on intermediate timescales. We show that directional motion emerges when the ratio of the effective temperatures of the tracked particle and suspension constituents is below a critical value.

  • Figure
  • Figure
  • Figure
  • Figure
  • Received 21 March 2022
  • Accepted 13 October 2023

DOI:https://doi.org/10.1103/PhysRevResearch.6.013156

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Statistical Physics & Thermodynamics

Authors & Affiliations

Deborah Schwarcz1,* and Stanislav Burov2,†

  • 1Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel
  • 2Physics Department, Bar-Ilan University, Ramat Gan 5290002, Israel

  • *deborah.schwarcz@gmail.com
  • stasbur@gmail.com

Article Text

Click to Expand

Supplemental Material

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 1 — February - April 2024

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×