• Open Access

Union-find quantum decoding without union-find

Sam J. Griffiths and Dan E. Browne
Phys. Rev. Research 6, 013154 – Published 9 February 2024

Abstract

The union-find decoder is a leading algorithmic approach to the correction of quantum errors on the surface code, achieving code thresholds comparable to minimum-weight perfect matching (MWPM) with amortized computational time scaling near-linearly in the number of physical qubits. This complexity is achieved via optimizations provided by the disjoint-set data structure. We demonstrate, however, that the behavior of the decoder at scale underutilizes this data structure for twofold analytic and algorithmic reasons, and that improvements and simplifications can be made to architectural designs to reduce resource overhead in practice. To reinforce this, we model the behavior of erasure clusters formed by the decoder and show that there does not exist a percolation threshold within the data structure for any mode of operation. This yields a linear-time worst-case complexity for the decoder at scale, even with a naive implementation omitting popular optimizations.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 3 July 2023
  • Revised 2 September 2023
  • Accepted 2 January 2024

DOI:https://doi.org/10.1103/PhysRevResearch.6.013154

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Quantum Information, Science & Technology

Authors & Affiliations

Sam J. Griffiths and Dan E. Browne

  • Department of Physics and Astronomy, University College London, London WC1E 6BT, United Kingdom

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 1 — February - April 2024

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×