• Open Access

Controlling collisional loss and scattering lengths of ultracold dipolar molecules with static electric fields

Bijit Mukherjee and Jeremy M. Hutson
Phys. Rev. Research 6, 013145 – Published 6 February 2024

Abstract

Trapped samples of ultracold molecules are often short-lived because close collisions between them result in trap loss. We investigate the use of shielding with static electric fields to create repulsive barriers between polar molecules to prevent such loss. Shielding is very effective even for RbCs, with a relatively low dipole moment, and even more effective for molecules such as NaK, NaRb, and NaCs, with progressively larger dipoles. Varying the electric field allows substantial control over the scattering length, which will be crucial for the stability or collapse of molecular Bose-Einstein condensates. This arises because the dipole-dipole interaction creates a long-range attraction that is tunable with electric field. For RbCs, the scattering length is positive across the range where shielding is effective because the repulsion responsible for shielding dominates. For NaK, the scattering length can be tuned across zero to negative values. For NaRb and NaCs, the attraction is strong enough to support tetra-atomic bound states, and the scattering length passes through resonant poles where these states cross threshold. For KAg and CsAg, there are multiple bound states and multiple poles. For each molecule, we calculate the variation of the scattering length with field and comment on the possibilities for exploring new physics.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
1 More
  • Received 14 November 2023
  • Accepted 19 December 2023

DOI:https://doi.org/10.1103/PhysRevResearch.6.013145

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Condensed Matter, Materials & Applied PhysicsAtomic, Molecular & Optical

Authors & Affiliations

Bijit Mukherjee and Jeremy M. Hutson*

  • Joint Quantum Centre Durham-Newcastle, Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom

  • *j.m.hutson@durham.ac.uk

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 1 — February - April 2024

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×