• Open Access

Exploring phononlike interactions in one-dimensional Bose-Fermi mixtures

Axel Gagge, Th. K. Mavrogordatos, and Jonas Larson
Phys. Rev. Research 6, 013138 – Published 2 February 2024

Abstract

With the objective of simulating the physical behavior of electrons in a dynamic background, we investigate a cold atomic Bose-Fermi mixture confined in an optical lattice potential solely affecting the bosons. The bosons, residing in the deep superfluid regime, inherit the periodicity of the optical lattice, subsequently serving as a dynamic potential for the polarized fermions. Owing to the atom-phonon interaction between the fermions and the condensate, the coupled system exhibits a Berezinskii-Kosterlitz-Thouless transition from a Luttinger liquid to a Peierls phase. However, under sufficiently strong Bose-Fermi interaction, the Peierls phase loses stability, leading to either a collapsed or a separated phase. We find that the primary function of the optical lattice is to stabilize the Peierls phase. Furthermore, the presence of a confining harmonic trap induces a diverse physical behavior, surpassing what is observed for either bosons or fermions individually trapped. Notably, under attractive Bose-Fermi interaction, the insulating phase may adopt a fermionic wedding-cake-like configuration, reflecting the dynamic nature of the underlying lattice potential. Conversely, for repulsive interaction, the trap destabilizes the Peierls phase, causing the two species to separate.

  • Figure
  • Figure
  • Figure
  • Figure
  • Figure
  • Received 20 March 2023
  • Accepted 3 January 2024

DOI:https://doi.org/10.1103/PhysRevResearch.6.013138

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by Bibsam.

Published by the American Physical Society

Physics Subject Headings (PhySH)

Atomic, Molecular & OpticalCondensed Matter, Materials & Applied PhysicsQuantum Information, Science & Technology

Authors & Affiliations

Axel Gagge1, Th. K. Mavrogordatos1,2, and Jonas Larson1,*

  • 1Department of Physics, Stockholm University, SE-106 91 Stockholm, Sweden
  • 2ICFO – Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

  • *jonas.larson@fysik.su.se

Article Text

Click to Expand

References

Click to Expand
Issue

Vol. 6, Iss. 1 — February - April 2024

Subject Areas
Reuse & Permissions
Author publication services for translation and copyediting assistance advertisement

Authorization Required


×
×

Images

×

Sign up to receive regular email alerts from Physical Review Research

Reuse & Permissions

It is not necessary to obtain permission to reuse this article or its components as it is available under the terms of the Creative Commons Attribution 4.0 International license. This license permits unrestricted use, distribution, and reproduction in any medium, provided attribution to the author(s) and the published article's title, journal citation, and DOI are maintained. Please note that some figures may have been included with permission from other third parties. It is your responsibility to obtain the proper permission from the rights holder directly for these figures.

×

Log In

Cancel
×

Search


Article Lookup

Paste a citation or DOI

Enter a citation
×